47 research outputs found

    Power Management Circuits for Front-End ASICs Employed in High Energy Physics Applications

    Get PDF
    The instrumentation of radiation detectors for high energy physics calls for the development of very low-noise application-specific integrated-circuits and demanding system-level design strategies, with a particular focus on the minimisation of inter-ference noise from power anagement circuitry. On the other hand, the aggressive pixelisation of sensors and associated front-end electronics, and the high radiation exposure at the innermost tracking and vertex detectors, requires radiation-aware design and radiation-tolerant deep sub-micron CMOS technologies. This thesis explores circuit design techniques towards radiation tolerant power management integrated circuits, targeting applications on particle detectors and monitoring of accelerator-based experiments, aerospace and nuclear applications. It addresses advantages and caveats of commonly used radiation-hard layout techniques, which often employ Enclosed Layout or H-shaped transistors, in respect to the use of linear transistors. Radiation tolerant designs for bandgap circuits are discussed, and two different topologies were explored. A low quiescent current bandgap for sub-1 V CMOS circuits is proposed, where the use of diode-connected MOSFETs in weak-inversion is explored in order to increase its radiation tolerance. An any-load stable LDO architecture is proposed, and three versions of the design using different layout techniques were implemented and characterised. In addition, a switched DC-DC Buck converter is also studied. For reasons concerning testability and silicon area, the controller of the Buck converter is on-chip, while the inductance and the power transistors are left on-board. A prototype test chip with power management IP blocks was fabricated, using a TSMC 65 nm CMOS technology. The chip features Linear, ELT and H-shape LDO designs, bandgap circuits and a Buck DC-DC converter. We discuss the design, layout and test results of the prototype. The specifications in terms of voltage range and output current capability are based on the requirements set for the integrated on-detector electronics of the new CGEM-IT tracker for the BESIII detector. The thesis discusses the fundamental aspects of the proposed on-detector electronics and provides an in-depth depiction of the front-end design for the readout ASIC

    Design and characterization of the readout ASIC for the BESIII CGEM detector

    Get PDF
    TIGER (Turin Integrated Gem Electronics for Readout) is a mixed-mode ASIC for the readout of signals from CGEM (Cylindrical Gas Electron Multiplier) detector in the upgraded inner tracker of the BESIII experiment, carried out at BEPCII in Beijing. The ASIC includes 64 channels, each of which features a dual-branch architecture optimized for timing and energy measurement. The input signal time-of-arrival and charge measurement is provided by low-power TDCs, based on analogue interpolation techniques, and Wilkinson ADCs, with a fully-digital output. The silicon results of TIGER first prototype are presented showing its full functionality.Peer Reviewe

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Composition of <i style="mso-bidi-font-style: normal">n</i>-dedocyl polyglucoside based middle phase microemulsions in surfactant-enhanced aquifer remediation

    No full text
    873-878The composition and solubilization power of the middle phase microemulsion formed by n-dodecyl polyglucoside (APG)/ n-butanol/water/non-aqueous phase liquids (NAPLs) quaternary system have been studied. The hydrophile-lipophile balanced (HLB) plane equation for the quaternary system has been deduced. Some physicochemical parameter, such as the mass fraction of <i style="mso-bidi-font-style: normal">n-butanol in the HLB interfacial layer, the coordinates of the start and end points of the middle phase microemulsion, the mass fractions of APG and n-butanol in the total system, and the solubilities of APG and n-butanol in oil phase are calculated. The washing liquids prepared according to the physicochemical parameters of the n-dodecyl polyglucoside based middle-phase microemulsion have been used to wash the NAPLs adsorbed on soil. The results indicate that the APG based middle phase microemulsion is suitable in surfactant-enhanced aquifer remediation

    PIMR: Parallel and Integrated Matching for Raw Data

    No full text
    With the trend of high-resolution imaging, computational costs of image matching have substantially increased. In order to find the compromise between accuracy and computation in real-time applications, we bring forward a fast and robust matching algorithm, named parallel and integrated matching for raw data (PIMR). This algorithm not only effectively utilizes the color information of raw data, but also designs a parallel and integrated framework to shorten the time-cost in the demosaicing stage. Experiments show that compared to existing state-of-the-art methods, the proposed algorithm yields a comparable recognition rate, while the total time-cost of imaging and matching is significantly reduced
    corecore